Studien visar att den nya batteriteknologin ger dubbelt så hög energitäthet jämfört med dagens aluminiumbatterier. Dessutom är materialkostnaden betydligt lägre, liksom miljöbelastningen som vi ser den idag.
– Detta öppnar för storskaliga användningsområden som solcellsparker och lagring av vindkraft, säger Patrik Johansson som är professor vid institutionen för fysik på Chalmers i ett pressmeddelande.
I det nya koncept har grafiten ersatts med ett nanostrukturerat organiskt katodmaterial. Den organiska molekylen i katodmaterialet tar effektivt emot positiva laddningsbärare från elektrolyten.
Batterierna har dessutom potential att bli betydligt mindre miljöovänliga.
– Tack vare att det nya katodmaterialet gör det möjligt att använda lämpligare laddningsbärare, kan batteriet dra bättre nytta av aluminiumets potential. Nu fortsätter arbetet med att hitta en ännu bättre elektrolyt, eftersom den nuvarande innehåller klor. Det vill vi komma bort ifrån, säger chalmersforskaren Niklas Lindahl, som studerat de interna mekanismer som styr energilagringen.
Än så länge finns inga aluminiumbatterier på marknaden och batterierna är relativt nya även inom forskningsvärlden. Patrik Johansson berättar att man hoppas på att aluminiumbatterierna ska ersätta litiumjonbatterierna.
– Framförallt kan de bli ett komplement och se till att litiumjonbatterierna kan användas bara där de behövs. Än så länge är aluminiumbatterierna knappt hälften så energitäta som litiumjonbatterierna, men vårt långsiktiga mål är att de ska bli lika energitäta.
Även om det återstår arbete med både elektrolyten och en bättre mekanism för uppladdning är aluminium i grunden en betydligt bättre laddningsbärare än litium. Detta eftersom den är multivalent vilket gör att varje jon ”kompenserar” för flera elektroner.
– Batterierna har dessutom potential att bli betydligt mindre miljöovänliga, förklarar Patrik Johansson.
Bakom konceptet står forskare på Chalmers tillsammans med kollegor vid National Institute of Chemistry i Slovenien.
Aluminium är en metall som teoretiskt kan ge batterier högre energitäthet, samtidigt som det redan finns en etablerad industri för både tillverkning och återvinning. Konceptet skulle dessutom ge markant lägre råvarukostnader, jämfört med dagens litiumjonbatterier.
I tidigare aluminiumbatterier har man använt aluminium som anodmaterial och grafit som katodmaterial, men grafit ger ett för lågt energiinnehåll för att skapa battericeller med praktiskt användbar prestanda.
Aluminium är en metall som teoretiskt kan ge batterier högre energitäthet, samtidigt som det redan finns en etablerad industri för både tillverkning och återvinning. Konceptet skulle dessutom ge markant lägre råvarukostnader, jämfört med dagens litiumjonbatterier.
I tidigare aluminiumbatterier har man använt aluminium som anodmaterial och grafit som katodmaterial, men grafit ger ett för lågt energiinnehåll för att skapa battericeller med praktiskt användbar prestanda.